Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus
نویسندگان
چکیده
Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats' cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV.
منابع مشابه
Bovine fetal epithelium cells expressing shRNA targeting viral VP1 gene resisted against foot-and-mouth disease virus.
RNAi could protect experimental animals from Foot-and-mouth disease virus (FMDV), but pivotal issue is delivery of RNAi. In this study, shRNA recombinant lentiviral plasmid RNAi-LT6 targeting VP1 of FMDV, which strongly suppressed the transient expression of a FLAG-tagged VP1 protein in 293T cells and significantly inhibited viral replication in BHK-21 cells, was screened and transfected into b...
متن کاملIdentification of Short Hairpin RNA Targeting Foot-And-Mouth Disease Virus with Transgenic Bovine Fetal Epithelium Cells
BACKGROUND Although it is known that RNA interference (RNAi) targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV), it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING ...
متن کاملOrganic Circulation and persistence of Foot – and – Mouth disease virus type O in guinea pig
Since, the most susceptible laboratory animal to Foot–and–Mouth disease virus (FMDV) is guinea pig, and then one milliliter of FMDV type (O) concentrations of 106-106.5 TCID50was inoculated intradermally (ID) to 10 plantar surface of guinea pig (right side). Guinea pig adapted virus has been prepared after generalization phase, and then one milliliter of virus was inoculated intradermally to 30...
متن کاملTransgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection
Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific short interfering RNA (siRNA) derived from small hairpin RNA (shRNA). In vitro...
متن کاملExpression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)
Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated g...
متن کامل